1. Integrals
Feel++ provide the integrate() function to define integral expressions which can be used to compute integrals, define linear and bi-linear forms.
1.1. Interface
integrate( _range, _expr, _quad, _geomap );
Please notice that the order of the parameter is not important, these
are boost
parameters, so you can enter them in the order you
want. To make it clear, there are two required parameters and 2
optional and they of course can be entered in any order provided you
give the parameter name. If you don’t provide the parameter name (that
is to say _range
= or the others) they must be entered in the order
they are described below.
Required parameters:
-
_range
= domain of integration -
_expr
= integrand expression
Optional parameters:
-
_quad
= quadrature to use instead of the default one. Several ways are possible to pass the quadrature order for backward compatibility
API |
Example |
Explanation |
Version |
|
|
Pass the quadrature order as an integer, the default quadrature is used |
v0.105 |
|
|
Pass the default quadrature formula on a triangle to integrate exactly order 5 polynomials |
v0.105 |
|
|
Pass the default quadrature formula on a mesh |
v0.105 |
|
|
Pass the quadrature order at compile time to integrate exactly order 5 polynomials. It will be deprecated in a future release |
up to v0.105 |
Starting from v0.105, quadratures are built at runtime and no more at compile time which means that quadrature orders can be adjusted dynamically, e.g from a command line option |
-
_geomap
= type of geometric mapping to use, that is to say:
Feel Parameter |
Description |
|
High order approximation (same of the mesh) |
|
Optimal approximation: high order on boundary elements order 1 in the interior |
|
Order 1 approximation (same of the mesh) |
1.2. Example
From doc/manual/tutorial/dar.cpp
form1( ... ) = integrate( _range = elements( mesh ),
_expr = f*id( v ) );
From doc/manual/tutorial/myintegrals.cpp
// compute integral f on boundary
double intf_3 = integrate( _range = boundaryfaces( mesh ),
_expr = f );
From doc/manual/advection/advection.cpp
// using default quadrature
form2( _test = Xh, _trial = Xh, _matrix = D ) +=
integrate( _range = internalfaces( mesh ),
_quad = 2*Order,
_expr = ( averaget( trans( beta )*idt( u ) ) * jump( id( v ) ) )
+ penalisation*beta_abs*( trans( jumpt( trans( idt( u ) )) )
*jump( trans( id( v ) ) ) ),
_geomap = geomap );
// use deprecated _Q
form2( _test = Xh, _trial = Xh, _matrix = D ) +=
integrate( _range = internalfaces( mesh ),
_quad = _Q<2*Order>(),
_expr = ( averaget( trans( beta )*idt( u ) ) * jump( id( v ) ) )
+ penalisation*beta_abs*( trans( jumpt( trans( idt( u ) )) )
*jump( trans( id( v ) ) ) ),
_geomap = geomap );
From doc/manual/laplacian/laplacian.cpp
auto l = form1( _test=Xh, _vector=F );
l = integrate( _range = elements( mesh ),
_expr=f*id( v ) ) +
integrate( _range = markedfaces( mesh, "Neumann" ),
_expr = nu*gradg*vf::N()*id( v ) );
2. Computing my first Integrals
This part explains how to integrate on a mesh with Feel++ (source
doc/manual/tutorial/myintegrals.cpp
).
Let’s consider the domain \(\Omega=[0,1]^d\) and associated meshes. Here, we want to integrate the following function
on the whole domain \(\Omega\) and on part of the boundary \(\Omega\).
There is the appropriate code:
int
main( int argc, char** argv )
{
// Initialize Feel++ Environment
Environment env( _argc=argc, _argv=argv,
_desc=feel_options(),
_about=about( _name="myintegrals" ,
_author="Feel++ Consortium",
_email="feelpp-devel@feelpp.org" ) );
// create the mesh (specify the dimension of geometric entity)
auto mesh = unitHypercube<3>();
// our function to integrate
auto f = Px()*Px() + Py()*Py() + Pz()*Pz();
// compute integral of f (global contribution)
double intf_1 = integrate( _range = elements( mesh ),
_expr = f ).evaluate()( 0,0 );
// compute integral of f (local contribution)
double intf_2 = integrate( _range = elements( mesh ),
_expr = f ).evaluate(false)( 0,0 );
// compute integral f on boundary
double intf_3 = integrate( _range = boundaryfaces( mesh ),
_expr = f ).evaluate()( 0,0 );
std::cout << "int global ; local ; boundary" << std::endl
<< intf_1 << ";" << intf_2 << ";" << intf_3 << std::endl;
}